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Abstract 

In this paper, we discuss a model of two-space food chain consisting of the population of 
ecology of foxes (the predator) and rabbits (prey) in Awash National park, Ethiopia. The 
study is based on formulation of a mathematical model to study the dynamics of the 
population densities and analyzing the stability of equilibrium points of the prey-predator 
model. The aim of this model is to explore the behavior of a simple model by considering 
a population of foxes, and rabbits. This model is constituted by a system of nonlinear 
decoupled ordinary differential equations. By using perturbed method, we identify the 
nature of the system at each equilibrium point. The stability analysis of a prey-predator 
model is discussed with numerical simulations. 
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Introduction 

Mathematical population models have been 
used to study the dynamics of prey-predator 
systems since Lotka and Volterra proposed the 
simple model (Lotka, 1925) of prey-predator 
interactions, now called the Lotka-Volterra 
model [LVE]. The Lotka–Volterra predator–
prey model was initially proposed by Alfred. 
Lotka in the theory of autocatalytic chemical 
reactions in 1910 (Lotka, 1910; Goel et al., 
1971). This was effectively the logistic 
equation (Berryman, 1992) originally derived 
by Pierre François Verhulst (Verhulst, 1838). In 
1920 Lotka extended the model, via Andrey 
Kolmogorov, to “organic systems” using a 
plant species and a herbivorous animal species 
and in 1925 he used the equations to analyse 
predator-prey interactions in his book on 

biomathematics (Lotka, 1925). The same set of 
equations was published in 1926 by Vito 
Volterra, a mathematician and physicist, who 
had become interested in mathematical biology 
(Goel et al., 1971); (Volterra, 1926); (Volterra, 
1931). In the late 1980s, an alternative to the 
Lotka–Volterra predator–prey model (and its 
common-prey-dependent generalizations) 
emerged, the ratio dependent or Arditi–
Ginzburg model (Arditi and Ginzburg, 1989). 
The validity of prey- or ratio-dependent models 
has been much debated [Abrams and Ginzburg, 
2000). The Lotka–Volterra equations have a 
long history of use in economic theory; their 
initial application is commonly credited to 
Richard Goodwin in 1965 (Gandolfo, 2008) or 
1967 (Goodwin, 1967), (Desai and Ormerod, 
1998). Since Lotka-Volterra model proposed, 
many mathematical models have been 
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constructed based on more realistic explicit and 
implicit biological assumptions, see, for 
example (Dennis et al, 2009; Genry, 2007; Jha 
et al., 2017; Kar, 2010; Lotka, 1925; Pulley et 
al., 2011; Suresh et al., 2017; Sunitha et al., 
2016; Taleb, 2013; Volterra, 1926).  All these 
mathematical models constituted by non-linear 
differential systems. Hence the system of non-
linear differential equations plays a central role 
in modeling population dynamics in ecology. 
We formulate and study a model involving 
prey-predator’s systems.  

Research was performed from late April 
through June 2019 at Adama Science and 
Technology University (ASTU) located in 
Adama, Ethiopia. On the interactions of prey-
predator animals, data are collected from 
internet and Awash National Park (ANP). ANP 
is located in the Rift Valley of Ethiopia, 
between 008 45' N and 009 15'N latitude and 

039 40 ' E and 040 10 ' E longitude. The total 
area is about 756 km2, which is bordered by the 
Awash River on the south and northeast, and 
Awash west wildlife reserve on the north and 
west. 

 Physical Meaning 

The Lotka–Volterra model makes a number of 
assumptions, not necessarily realizable in 
nature, about the environment and evolution of 
the predator and prey populations (PPD, 2018): 
• The prey population finds ample food at all

times.
• The food supply of the predator population

depends entirely on the size of the prey
population.

• The rate of change of population is
proportional to its size.

• During the process, the environment does
not change in favour of one species, and
genetic adaptation is inconsequential.

• Predators have limitless appetite.
As differential equations are used, the solution
is deterministic and continuous. This, in turn,
implies that the generations of both the predator
and prey are continually overlapping (Cooke et
al., 1981).

Figure 1: The prey-predator interaction of 
foxes and rabbits. 

Materials and Methods 

Let x and y be the population of the foxes and 
rabbits at any time t. The main feature of the 
model that two different functional responses of 
the predator are incorporated in the model to 
represent the difference in the way the predator 
feeds on each of the prey species. Terms 
representing logistic growth of the prey species 
in absence of the predator are included in the 
prey equations. Interspecific competition 
among the prey species is also included in the 
model. The model has two non-linear 
autonomous ordinary differential equations 
describing how the population densities of the 
two species would vary with time. Before 
construction of the model, we have the 
following assumption. 

Assumptions for Model 

The following assumptions are made in order to 
construct the model. 

(i). Prey birth rate is proportional to the size 
of the population. 

(ii). Predator birth rate is proportional to the 
size of both the predator and prey 
population. 

(iii). Prey death rate is proportional to the 
size of both the predator and prey 
population. 

(iv). Predator death rate is proportional to the 
size of the predator population. 

(v). The species live in an ecosystem where 
external factors such as droughts, fires, 
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epidemics are stable or have a similar 
effect on the interacting species. 

(vi). One prey is easy to capture by the 
predator, while the other prey has 
adopted to capture it. 

(vii). There is logistic growth of the prey in 
absence of the predator or human 
poaching of the prey. That is the 
population of the prey would increase 
(or decrease) exponentially until it 
reaches the maximum density of the 
park. 

(viii). The rate of increase of the predator 
population depends on the amount of 
prey biomass it converts as food. 

 Mathematical Model 

Suppose the non-dimensional population 
density of the prey is x at time t, the population 
density of the predator is y at time t. In order to 
formulate the model, we have to use the above 
assumption with proportionality. 

(i). The growth rate of any species at a 
given time is proportional to the number 
of species present at that time. 

(ii). The species are living in a homogenous 
environment and age structures are not 
taken into consideration. 

(iii). In the absence of the predators, the prey 
population would grow at logistic 
growth (natural rate), say α  with 

, 0dx x
dt

α α= > . 

(iv). In the absence of the prey, the predator 
population would decline at natural rate, 

say β  with , 0dy y
dt

β β= > . 

(v). When both prey and predator are 
present, the specific growth rate of prey 
is diminished by an amount population 
to the predator population and the 
growth rate of population enhanced 
proportional to prey population, 
consequently the effect of predator 
eating prey is an interaction rate of 
decline xyγ−  in the prey population x 
and an interaction rate of growth xyγ−  
of the predator population y with δ  and 
γ  positive constants.  

Under the above assumption proportionality, 
we modeled the prey-predator equations. 

,

,

dx x xy
dt
dy xy y
dt

α γ

δ β

= −

= −
(1) 

and (0) 0, (0) 0x y≥ ≥ , where the parameter 
α  is the prey birth (growth) rate, β  is the 
predator death rate, δ  and γ  are the measure 
of the effect of the interaction between the two 
species of predator and prey respectively.  

The Lotka-Volterra model makes a number of 
assumptions, not necessarily realizable in 
nature, about the environment and evolution of 
the predator and prey population. (i) The prey 
population finds ample food at all times. (ii) 
The food supply of the predator population 
depends on the size of the prey population. (iii) 
The rate of change of population is proportional 
to its size. (iv) During the process, the 
environment does not change unfavorable to 
one species, and genetic adaptation is 
inconsequential. (v) Predator has limitless 
appetites.  

Although the Lotka-Volterra model is the best 
model currently available to accurately portray 
mathematically the population variation 
dynamics of a predator relationship, there are 
still several holes in science. All of the 
assumptions that go into this kind of model 
development naturally inflict some “holes” at 
the same time. Restrictions and limitations of 
this research exist in the assumptions it is built 
on. In my view, the greatest limitation of this 
model has against it is its lack of relevance to 
the majority of predation relationships. In order 
for this model to accurately portray the reality 
of population variance, the two species 
involved must satisfy (or close to satisfy) those 
major pieces to the puzzle. The model works for 
different animals, but the model not express 
explicitly for some predator prey interaction. 
The model is limited to predator relationships 
that rely explicitly on one another, free of the 
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variables of climate change, natural disaster, 
hunting, or alternative food supplies.  

We can also plot the solutions of the model 
equations (1) parametrically as orbits in phase 
space, without representing time, but with one 
axis representing the number of rabbits (prey) 
and the other axis representing the number of 
foxes (predator) for all times. In the model 
equation (1), we can eliminate time to produce 
a single differential equation in x and y as 
follows 

dy xy y
dx x xy

δ β
α γ

−
=

−
.  (2) 

Applying variable separable technique to the 
differential equation (2), one can get the 
implicit relationship. Indeed, we have 

( ) ( ) ( )
( )

ln ln
ln ln .

dy y x y xdy dx
dx x y y x

dy dx
y x

y y C x x
C x x y y

δ β α γ δ β
α γ

α βγ δ

α δ δ β
δ β α δ

− − −
= ⇒ =

−

   ⇒ − = −   
  

⇒ − + = −
⇒ = − − +

 

The solutions of the equation (2) are closed 
curves, where C is a constant quantity 
depending on the initial conditions and 
conserved on each curve. 

Stability Analysis 

In this paper, the Jacobin matrix method is used 
to linearized the non-linear system of prey-
predator equations and also different MATLAB 
commends are used for solving differential 
equations (like ode45, ode23, etc.) to test the 
stability analysis of the model under different 
parameters. 

Equilibrium Points 

The equilibrium points of the system are 
necessary for the purpose of studying the local 
stability nature of the ecological model (1). The 

system, under investigation, has the following 
two equilibrium points. 
(i) Fully washed state or extent state:

1 (0,0)E = .

(ii) Coexistence state 2 ,E β α
δ γ

 
=  
 

 . 

Existence and Stability Analysis of 
Equilibrium Points 

The Jacobin matrix for the system (1) at 
equilibrium point ( , )E x y=  is given by  

E

y x
J

y x
α λ γ
δ β δ
− − 

=  − +             
(3) 

Theorem 1: The system is always exists and 
unstable at the equilibrium points E1. 

Proof: We have 1 (0,0)E = , it is clear that the 
equilibrium point El exists and the 
corresponding Jacobin matrix at El is 

1

0
0EJ
α

β
 

=  − 

From
1EJ , we have the 9values 1λ β= −  < 0 

and 2λ α= > 0.  Hence the equilibrium point 
is saddle point and the dynamical system (1) is 
unstable. 

Theorem 2: The interior equilibrium point 

2 ,E β α
δ γ

 
=  
 

 is always neutrally stable. 

Proof: We have 2 ,E β α
δ γ

 
=  
 

, where 0β
δ
>

and 0α
γ
> . Hence the equilibrium point E2

exists and the corresponding Jacobin matrix at 
E2 is 
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2

0

0
EJ

βγ
δ

αδ
γ

 − 
 =
 
  

The eigenvalues of 
2EJ  are 1 iλ αβ=   and

2 iλ αβ= − . Hence the dynamical system (1) 
at the equilibrium point E2 is always neutrally 
stable. 

Results and Discussions 

In this section, the systems of equations given 
in (1) are solved numerically using the 
MATLAB software by fixing some of the 
parameters values in the model. From the 
graphical representations (Figure 2, Figure 3), 
one can identify how the system is changing its 
behavior.  

Indeed, when both prey and predator are 
present, the specific growth rate of prey is 
diminished by an amount population to the 
predator population and the growth rate of 
population enhanced proportional to prey 
population, consequently the effect of predator 
eating prey is an interaction rate of decline 

xyγ  in the prey population x and an interaction 
rate of growth xyγ  of the predator population 
y with δ  and γ  positive constants. In 

particular, by selecting the parameter values 
(assume x and y quantify thousands each) given 
below in the dynamical system (1),  

0.55, 0.84, 0.028, 0.027α β γ δ= = = =  

with initial conditions x(0) = y(0) = 10, we have 
the corresponding eigenvalues 

1 0.6797058187iλ = ,

1 0.6797058187iλ = −  and equilibrium point 

( )2 31.11111111,19.64285714E = . The 
equations (1) describe predator and prey 
population dynamics in the presence of one 
another, and together make up the Lotka-
Volterra predator-prey model. The model 
predicts a cyclical relationship between 
predator and prey numbers: as the number of 
predators (y) increases so does the consumption 
rate ( xyγ ), tending to reinforce the increase in 
y. Increase in consumption rate, however, has
an obvious consequence - a decrease in the
number of prey (x), which in turn causes y (and
therefore xyγ ) to decrease. As xyγ  decreases
the prey population is able to recover, and x
increases. Now y can increase, and the cycle
begins again. This graph in Figure 2 shows the
cyclical relationship predicted by the model for
hypothetical predator and prey populations.
Therefore, the system (1) is always neutrally
stable by observing the species growth rates.

(a) (b) 

Figure 2 0.55, 0.84, 0.028, 0.027α β γ δ= = = =  for ( )2 31.11111111,19.64285714E =
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Now, taking the parameter values given below 
in the dynamical system (1),  

0.5, 6.5, 0.2, 0.3α β γ δ= = = =  

with initial conditions x(0) = y(0) = 10, we get 
the corresponding eigenvalues 

1 5.700877125iλ = , 1 5.700877125iλ = −
and the equilibrium point 

( )2 21.66666667,25.00000000E = .

(a) (b) 
Figure 3: 0.5, 6.5, 0.2, 0.3α β γ δ= = = =  for ( )2 21.66666667,25.00000000E =

Following the discussion given for Figure 2, we 
can observe that the prey population increases 
when there are no predators, but the predator 
population decreases when there are no prey. 
Therefore, we can conclude that the system (1) 
is always neutrally stable by observing the 
species growth rates in Figure 3.  

MATLAB Code for Simulations 

In this section, we provide MATLAB 
simulation code to obtain the graphical 
representation of the model. The main 
MATLAB code is as follows. 

[t,y]=ode45(@prey_predator,[0 20],[30;4]) 
plot(t,y(:,1), 'red',t,y(:,2),'blue');   % for 2D 
over time 
%plot(y(:,1),y(:,2))                     % for phase 
portrait  
xlabel('Time, t'); 
ylabel('Population'); 
title('Prey-Predator Solutions Over Time'); 
legend('Prey','Predator') 

The sub-code of MATLAB consisting of non-
linear equations with constants is given as 
follows. 

function myEqs = prey_predator (t, y) 
a = 5.0; %0.55;  
c = 0.2; %0.028;  
b = 6.5; %0.84;   
d = 0.3; %0.027;  
myEqs = [a*y(1)-c*y(1)*y(2); 

-b*y(2)+d*y(1)*y(2)];

Conclusion 

In this paper, we presented a model of two-
space food chain consisting of the population of 
ecology of foxes (predator) and rabbits (prey) 
in Awash National park, Ethiopia. The aim of 
this paper is to explore the behavior of a simple 
model by considering a population of foxes and 
rabbits. This model is constituted by a system 
of non-linear decoupled first order ordinary 
differential equations. By using perturbed 
method, we investigate the local stability nature 
of the system at each possible equilibrium 
point. Further, the numerical illustrations at 
suitable parametric values to the model are 
presented by observing the species survivalness 
in nature for long time. 

One can also extend the proposed model to 
three species model (for example, interaction 
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between foxes, rabbits and rats), and following 
the procedure of the proposed model, we can 
give conclusion about the sustainability of 
foxes, rabbits and rats. 
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