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Abstract 

The knowledge of future climate information at local level has enormous 
advantage in Ethiopia, where the driver of the economy is agriculture. 
This study was conducted to downscale the climate change scenarios for 
Miesso station for the year 2011-2099. Daily climate data and normalized 
large scale Hadley Centre coupled Model version 3 (HadCM3) model 
predictors were used for downscaling climate change scenarios. The 
change for rainfall, minimum and maximum temperatures were 
developed using the HadCM3 A2a and B2a Emission Scenarios by 
Statistical Downscaling Model (SDSM) version 4.1software. The SDSM 
analysis showed an increasing trend for both annual precipitation and 
temperatures. Accordingly, the average monthly and annual minimum 
and maximum temperatures were found to rise in 2020, 2050 and 2080s 
for A2a and B2a emission scenarios. Nevertheless in 2080s, the average 
annual maximum temperature increment would be high for both A2a 
and B2a scenarios. Therefore the use of seasonal climate outlook 
information and introduction of new crops, varieties and management 
practices that goes in line with the changing climate patterns is 
suggested for the study area.  
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Introduction  

 
The issue of climate variability and 
climate change has become more 
threatening not only to food security 
and sustainable development of any 
nation, but also to the totality of 
human existence. Overall, human 
induced change in climate pattern is 
believed to pose the most damaging 
impacts on food security and 
sustainable growth of most 
developing nations. Accordingly, the 
projected higher temperature and 
variable precipitation levels will 
unequivocally depress crop yields 
through direct effects as well as 
indirect impact by triggering insect 
pests, diseases and weeds (Gadgil et 
al., 1998).  

About 66% of the total areas of 
Ethiopia fall within the arid and semi 
arid climatic zone (MoA, 1998). 
Nevertheless, agriculture, which is 
highly sensitive to climate change, is 
the driver of the country’s economy as 
it accounts for half of GDP and 80% of 
employment (MoARD, 2007). Thus, 
the dependence of Ethiopia on 
agriculture makes its economy 
extremely vulnerable to the risks 
associated with climate change. No 
doubt climate change is and will form 
a serious concern for both researchers 
and development planners in 
Ethiopia.  
Apart from the detailed analyses and 
quantification of past observational 
climate data, downscaled climate 
information from General Circulation 
Model (GCM) predictors is essential 
for ex-ante vulnerability assessment 

and impact mapping against 
agricultural systems while enhancing 
the potential to adapt to the changes 
(CIES, 1997; Wilby et al., 2004). 

Knowledge and management of the 
future state of climate are critical 
issues in order to reduce the negative 
impacts of climate change on 
agriculture. General Circulation 
Model outputs could provide 
computationally inexpensive and site 
specific future climate information 
that can reveal future trend and 
variability over a given region. 
Augmentation of future climate data 
from GCM outputs is built based on 
various assumptions of greenhouse 
gas concentrations including doubling 
of carbon dioxide concentration.  
The Miesso area, which is located in 
the eastern escarpment of the Central 
Rift Valley of Ethiopia, is one of the 
areas hit by climate change impacts. 
There is a considerable uncertainty 
about the potential impacts of climate 
change on crop production and 
productivity in this area. The 
knowledge of predicted 
meteorological change on crop 
production and productivity is 
important so as to develop viable 
climate change adaptation options in a 
given area. The main objective of this 
study was therefore to predict change 
in rainfall, minimum and maximum 
temperatures for the year 2011-2099 
for Miesso station.   
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Materials and Methods  

 

Description of the Study 

Area  

Miesso is located in the Eastern 
escarpment of the Central Rift Valley 
of Ethiopia that forms the heart and 
corridor of the Ethiopian Rift Valley. 
The geographical location of Miesso 
district is 9o 23’ N latitude and 40o 75’ 
E longitudes and found at an altitude 
1400 meter above sea level (Mamo, 
2005). The soil type of the study area 
is has developed almost entirely from 
volcanic material and includes both 
alkaline (basalts) and acidic (rhyolites, 
ignimbrites, pumices and ash) rock 
types (Smith, 1982). According to 
Kidane et al. (2006), Miesso has four 

types of soil: regosols, lithosols, 
luvisols and cambisols where the 
dominant type is eutric regosols 
(eRG). The soil texture is mainly Silty 
Clay loam with slightly alkaline pH 
ranging from 7.8 to 8.3 (Worku, 2006; 
Lemma, 2008).  

Climate Parameters and 

Database Used for the Study 

Daily rainfall data, maximum and 
minimum (1973-2009) temperatures 
were obtained from the National 
Meteorological Agency of Ethiopia 
archives (NMA). Normalized large 
scale HadCM3 model predictors were 
obtained from website of the National 
Center for Environmental Prediction 
(NCEP) reanalysis data set gridded at 
2.5o latitude x 3.75o longitudes 
(www.cics.uvic.ca/scenarios/index. 
cgi?scenarios). Before analysis, 
missing values were patched using 

Markov chain simulation model of 
INSTAT v.3.36 (Stern et al., 2006). 
Quality control check was also done 
for maximum and minimum daily 
temperature values by running a 
macro which undertakes automatic 
checking (minimum temperature 
greater than maximum temperature) 
and graph the data for any of the 
years that fail the check (Stern et al., 

2006). 

 

Developing Climate Change 

Scenarios  

Statistical Downscaling Model (SDSM 
Version 4.1) was adopted for spatial 
downscaling of daily rainfall, 
minimum and maximum temperature 
from global GCM predictors to the 
scale of the study area (Wilby and 
Dawson, 2007). For the purpose of the 
analysis, data were downloaded from 
HadCM3 (UK Hadley Centre for 
Climate Prediction and Research) 
global model grid box between 10o N 
and 41.25o E (Figure 1).   

 In order to identify large scale 
downscaling predictor variable(s) 
showing significant correlation at 5% 
significant level, screening of potential 
downscaling predictor variables were 
done for observed Miesso station time 
series (1973-2000) of rainfall and 
minimum and maximum temperat-
ures. To develop multiple a linear 
regression relationship between the 
predictor variables selected and the 
local station data, the SDSM was 
calibrated using twenty years (1973-
1992) observed station climate data 
and daily observed (standardized) 
gridded data (1961-2000). The model 

http://www.cics.uvic.ca/scenarios/index.%20cgi?scenarios
http://www.cics.uvic.ca/scenarios/index.%20cgi?scenarios
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was validated using the remaining 
station data from 1993 to 2000 in order 
to make series of amendments before 
further analysis was carried out on the 
data. 

The Hadley Centre Coupled Model 
version 3 (HadCM3) A2a and B2a 
were the two daily GCM-derived 
predictor variables used for scenario 
generation. The A2a and B2a are 
story-line scenarios developed by 
IPCC Special Report on Emission 
Scenarios (SRES). The A2a scenario 
describes a highly heterogeneous 
future world with regionally oriented 
economies (high rate of population 
growth, increased energy use, land-
use changes and slow technological 
change). Likewise, B2a is regionally 
oriented but with a general evolution 
towards environmental protection 
and social equity (lower rate of 
population growth, a smaller increase 
in GDP but more diverse 
technological changes and slower 
land-use changes).   

The Hadley Centre Coupled Model 
(HadCM3) scenario generation 
operation produces ensembles of daily 
weather series under future forcing 
(H3A2a 1961-2099 and H3B2a 1961-
2099) with two (A2 and B2) emission 
scenarios relative to the 1961-1990 
normal (base period). As a final 
product of downscaling twenty 
ensembles of daily climate data was 
generated for this study. The 
downscaled future daily ensembles of 
climate data were then used to 
examine monthly patterns and general 
trend of annual rainfall, average 
annual minimum and maximum 
temperatures of the study area for 
current (base period) and future 
(2011-2099) periods by averaging the 
twenty independent ensemble data. 
Moreover, climate change scenarios 
were projected for the periods 
2020(2011-2040), 2050(2041-2070) and 
2080 (2071-2099).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The African Window with 2.5° latitude x 3.75° longitude grid size from which grid box for the study area is 

selected.  
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Result and Discussion  

 

Screening predictor 

variables 

The type and notations of large scale 
Global Circulation Models (GCM) 
predictor variables which gave better 

correlation with Miesso station 
measured daily precipitation, daily 
minimum and maximum temperature 
at 5% significant level are shown in 
Table 1.  
 

 

Table 1. List of large scale predictors that showed better correlation results at P<0.05  

Predictand                                         Predictor Notation Partial r* 

Rainfall 
Mean sea level pressure mslpaf 0.093 
Relative humidity at 500 hPa r500af 0.063 

Maximum temperature 
Mean sea level pressure mslpaf -0.393 
500 hPa geopotential height p500af 0.189 
Relative humidity at 850 hPa r850af -0.106 

Minimum temperature 

Mean sea level pressure               mslpaf     -0.300 
Surface airflow strength p_faf  0.158 
850 hPa geopotential height p850af  0.237 
Near surface relative humidity rhumaf  0.149 

*The partial correlation coefficient (r) shows the explanatory power that is specific to each predictor significant at  
   5% significant level.  

 

The partial correlation coefficients 
indicated that on average mean sea 
level pressure has strong correlation 
with local precipitation and strongest 
correlation with maximum 
temperature. On the other hand, mean 
sea level pressure followed by 
geopotential height at 850 hPa is 
strongly correlated with minimum 
temperature (Table 1).   

Calibration and validation of 

the SD model 

The partial correlation coefficient 
obtained during calibration and 
validation of the Statistical 
downscaling (SD) with daily rainfall 
data showed poor agreement between 

predictors and observed rainfall 
(Table 2). However, this results 
collaborates the findings of Wilby and 
Dawson (2007) who had reported that 
rainfall is a conditional process as it is 
dependent on an intermediate process 
between regional forcing and local 
weather (e.g., on wet or/and dry day 
occurrence, humidity, cloud cover and 
atmospheric pressure). Therefore, the 
statistics obtained during calibration 
and validation of SD model using 
conditional process like rainfall may 
not show significant correlation with 
its corresponding predictor variables 
(Wilby and Dawson, 2007).  
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Table 2. Calibration and validation statistics of monthly precipitation at Miesso  

 
 

 

 

Likewise, calibration of daily 
minimum and maximum 
temperatures was carried out on 
annual model basis. The minimum 
and maximum temperature 
simulations showed better agreement 
with large scale General Circulation 

Model (GCM) predictor variables with 
partial r values of 0.433 and 0.687, 
respectively (Table 3). Moreover, the 
correlation statistics obtained during 
calibration steps were fully 
maintained during the validation 
period (Table 3). 

 
Table 3. Calibration and validation statistics of annual maximum and minimum temperature  

 

 

 

* = Unconditional. 

 
Given better multiple regression 
relationship between observed Miesso 
daily climate data and large scale 
predictor variables, the Statistical 
downscaling model (SDSM) has been 
used for generating Miesso station 
climate scenario for the period from 
2011-2099. 
 

Base line scenarios  

 

Precipitation  
The SDSM is able to simulate the 
rainfall except the extreme events 
(Figure 2), since the model 
overestimates the extreme values and 

keeps more or less the average values 
of rainfall. The lack of replicating the 
extreme values was also observed by 
Wilby et al. (2005) and he described it 
as “the model is less skilful at 
replicating the frequency of events”. 
The total precipitation values are 
found to be overestimated both 
seasonally and annually (Figure 3). 
The model was able to simulate only 
bega (October-November-December-
January-February) and belg (March-
April-May) season rainfall with slight 
accuracy. Therefore, the GCM outputs 
did not show good agreement with 
the observed rainfall data of Miesso. 

  

 
 
 

Model statistics 
R2 Standard error 

Unconditional Conditional Unconditional Conditional 

Calibration 0.011 0.121 0.231 11.73 

Validation   0.054 0.170 0.386 9.638 

Predictand 
Calibration Validation 

R2 Standard error R2 Standard error 

Maximum temperature* 0.433 2.585 0.658 1.588 
Minimum temperature * 0.685 2.313 0.791 1.663 
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Figure 2. Observed and simulated pattern of monthly rainfall at Miesso for the base period (1973-2000).   

0

200

400

600

800

1000

Belg(MAM) Kiremt(JJAS) Bega(ONDJF) Annual 

T
o

ta
l 

p
re

c
ip

it
a
ti

o
n

 (
m

m
) 

  
1

1973-2000 (observed ) 1973-2000(generated-A2a)

1973-2000(generated-B2a)

 
MAM=March-April-May; JJAS=June-July-August-September; ONDJF=October-November-December-January-Febrauary.   
  Figure 3. Observed and simulated average seasonal precipitation of Miesso for the base period (1973-2000). 
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Minimum and maximum 

temperature 

The downscaled temperature values 
were averaged to monthly time steps 
in order to compare with the observed 
values. The SDSM was able to 
simulate minimum temperature 
reasonably well except its poor 
performance in estimating the extreme 
high (April, May and June) and low 
(December) temperature events 
(Figure 4). Except for months of April, 
May and June in which values were 
underestimated, the model showed 
good agreement with observed 
minimum temperature data. The 
SDSM performs reasonably well in 

estimating mean daily maximum 
temperature in all months except May 
and June, in which the model showed 
slight underestimation (Figure 5). In 
general, the mean daily temperature 
patterns showed the same trend as 
observed data indicating that the 
Statistical Downscaling Model 
(SDSM) could provide more skillful 
prediction of maximum temperature. 
As all the simulated results indicate 
that the SDSM could simulate 
potentially all the patterns of 
predictands (rainfall, minimum and 
maximum temperature) except the 
extreme rainfall events, the SDSM 
could be used as a tool to predict 
future climate of the study area. 
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Figure 4. Pattern of observed and simulated mean daily minimum temperature for the base period (1973-2000). 
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   Figure 5. Pattern of observed and simulated mean daily maximum temperature for the base period (1973-2000). 

 

Climate change scenarios 

projected for the period 

2011-2099 

Precipitation was projected under two 
Global model emission scenarios 
(H3A2a and H3B2a) and trends of 
future annual total rainfall were done 
(Figure 6). The Figure showed that 
annual total precipitation will increase 
slightly at Miesso under both emission 
scenarios. In addition, Figure 22 
showed future patterns of minimum 
and maximum temperature at Miesso 
relative to the base period for A2a and 
B2a emission scenario. The projected 
mean annual minimum and 
maximum temperatures showed a 
consistent increasing trend from the 
base period values under both 
emission scenarios. The projected 
mean monthly rainfall total at Miesso 

under A2a and B2a scenarios (Figure 8 
a & b), when compared to the base 
period showed an increasing trend in 
total rainfall during the months of 
February and March, while in May the 
rainfall total indicated a decreasing 
trend by the 2020s, 2050s and 2080s. In 
April the rainfall showed a decrease in 
total amount from the base period but, 
the amount will experience an 
increase total amount from 2020s 
through to 2080s under A2a scenario. 
In the main rainy (JJAS) season, the 
rainfall amount will experience a 
consistent decrease in total amount in 
June and July. In August and 
September, the rainfall will increase in 
total amount by the 2020s, 2050s and 
2080s. In the drier months, rainfall 
amount will increase slightly when 
compared to the base period in A2a 
scenario (Figure 8 a). 
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     Figure 6. Future pattern of annual precipitation at Miesso station for the past (1973-2010) and future (2011-2099) 

periods.  
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       Figure 7. Simulated future pattern of average annual minimum and maximum temperatures   at Miesso for the past 
(1973-2010) and future (2011-2099) periods. 
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Figure 8. Projected mean monthly precipitation pattern at Miesso compared to the base period under A2a (a) and B2a (b) 

scenarios.  

 

However, under B2a scenario, for 
months of February, March, August 
and September, the rainfall amount 
will experience an increasing trend 
whereas, in April, May and June the 
rainfall amount will experience a 
decreasing trend in the future (Figure 
8b). Similarly, the projected rainfall 
amount will show decreasing trend in 
October, and probably a slight 
increase in amount in the dry months 
(November-January). 

Minimum and maximum 

temperature  

Figure 9 (a & b) shows monthly future 
changes (absolute values in °C) in 
minimum temperature from base 
period values. Though the change in 
minimum temperature for future 

periods will vary from month to 
month, the highest increase in 
minimum temperature (0.9 oC in 2020s 
to 3.3 oC in 2080s) will occur for 
months of May, June, September, 
October and November for the A2a 
scenario; and an increase of 0.9 oC in 
2020s to 2.5 oC in 2080s in the months 
of May, June, July and September for 
the B2a scenario. The projected mean 
annual minimum temperature in 
2020s will rise up to 0.7 oC in both 
emission scenarios. In 2050s, the 
minimum temperature will increase 
by 1.6 and 1.3 oC under A2a and B2a 
emission scenarios, respectively. In 
2080s, minimum temperature will 
increase by 2.9 oC and 3.2 oC for A2a 
and B2a scenario, respectively. 
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Figure 9. Change in average monthly minimum temperature in the future (2011-2099) from    the base (1973- 2000) 
period under A2a (a) and B2a (b) scenarios.  

Regarding maximum temperature, 
highest monthly temperature increase 
during the 2020s, 2050s and 2080s will 
occur during January, May, June, July 
and September under A2a scenario 
(Figure 10 a & b). Under B2a scenario, 
the monthly future change in 
maximum temperature follows the 
same increasing trend as of A2a 
scenario except the lower increasing 

temperature values. On the other 
hand, the downscaled maximum 
temperature in 2020s showed an 
increase in maximum temperature by 
1.1 oC and 1.2 oC for A2a and B2a 
emission scenarios, respectively. For 
2050s the increase will be 3 oC for A2a 
and 2.4 oC for B2a scenarios, 
respectively. 

 

 

 

 

 

 

 

 
 

Figure 10. Change in average monthly maximum temperature in the future (2011-2099) from   the base (1973-2000) 
period under A2a (a) and B2a (b) scenarios.   
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The annual average increment will be 
high in 2080s, which is 5.3 oC for A2a 
and 3.8 oC for B2a scenarios. In 
general, the future will experience an 
increasing trend of maximum 
temperature at the study area under 
both A2a and B2a scenarios. 

 

Conclusion and 

Recommendation  

 
The SDSM projected climate scenarios 
results showed slightly an increasing 
trend of annual average rainfall and 
consistent increasing trend of 
minimum and maximum temp-
erature. Therefore, crop producers 
should use seasonal climate outlook 
information in order to adjust their 
farming systems. Introduction of new 
crops, varieties (drought or heat 
tolerant) with optimum maturity 
period and crop management 
practices that go in line with the 
changing climate patterns should be 
the priority for research and 
development planners in order to 
arrest the impact of future climate 
change at the study area.   
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