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Abstract

This paper examined the spread of hepatitis C virus (HCV) infection among population of
chronically infected individuals receiving treatment. The model classifies individuals into five
categories: susceptible, acutely infected, chronically infected, treated, and recovered, and is
governed by a system of nonlinear ordinary differential equations. The qualitative analysis
focuses on key solution properties such as positivity, boundedness, existence, uniqueness, and
the stability of the disease-free equilibrium, along with a sensitivity analysis. MATLAB
simulations provide additional insights into the progression of the infection. The study findings
highlight the potential of timely intervention, using either direct-acting antivirals (DAAs) or
natural herbal supplements under medical guidance, to significantly reduce the duration of
chronic HCV infection and ultimately eliminate the virus.
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Introduction

Hepatitis C virus (HCV) is transmitted through
blood-borne infection that inflames and
damages the liver, significantly increasing the
risk of liver cancer. While the virus may start
with a seemingly minor infection, it can
progress to chronic diseases such as cancer and
liver cirrhosis. Despite being identified in 1989,
it has now grown into a serious threat to public
health (Shi, R., and Cui, Y. 2016). The virus is
transmitted through various routes, including
the sharing of contaminated needles and other
drug paraphernalia, unsafe blood transfusions,
and unprotected sexual contact (Sadki et al,
2023). According to recent WHO report,
approximately 185 million people worldwide
are affected with HCV. Of these, around 85%
develop chronic infections, while experience
acute infections. HCV is responsible for an
estimated 350,000 deaths each year, and
currently, there is no vaccine available to
prevent hepatitis C infection. In Australia,
direct-acting antivirals (DAAs) have been
introduced for the treatment of chronic hepatitis
C, offering high cure rates with minimal side
effects (Nguyen et al, 2023). While DAAs

represent a significant improvement, the “one-
size-fits-all” approach has its limitations. The
DAAs industry is increasingly recognizing the
importance of personalized medicine, tailoring
treatment to individual patient characteristics
for optimal outcomes (Nguyen et al., 2023).

Mathematical models are powerful tools; they
don't just predict, they can also guide research.
They help us pinpoint crucial biological factors
that need more investigation and suggest
changes in behavior or medical care that could
improve patient results. HCV, for instance, is a
major public health concern because it can lead
to severe complications. Yet, surprisingly little
attention has been given to developing
mathematical models to understand how HCV
spreads within communities. Ahmed et al.
(2022) investigated the dynamic of
HCV using a fractal-fractional model,
analyzing both local and global
stability of the disease. Similarly,

Elbasha (2013) developed a mathematical
model to study how HCV spreads and how
antiviral treatments affect its spread. Their
model indicated that higher treatment rates with
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more effective drugs, resulting in faster cures
and fewer treatment failures, would
significantly reduce the number of new
infections and the overall impact of the disease.

The researchers also highlighted the importance
of reinfection in understanding HCV
transmission and the effectiveness of treatment.
They concluded that highly effective treatments
have the potential to significantly reduce the
burden of HCV on public health. Ayobami
(2020) developed a mathematical model to
study HCV  transmission, incorporating
treatment and other control measures. The
model showed that early intervention, including
education, awareness campaigns, and intensive
treatment at the initial stages of an outbreak
could significantly reduce or even eradicate
HCV. Mushayabasa (2014) assessed the impact
of antiviral therapy, abstinence, and relapse on
the spread of HCV, simulating the long-term
dynamics of HCV cases over a 50-year period.
The model suggested that increasing abstinence
rates and reducing relapse rates could
significantly reduce HCV transmission among
intravenous drug users. Additionally, Shi, R.,
and Cui, Y. (2016) studied a mathematical
model that examines the transmission of HCV,
incorporating both chronic primary infection
and the possibility of reinfection.

A fractional-order differential mathematical
model was used to analyze the dynamics of
HCV infection, considering both virus-to-cell
and cell-to-cell transmission pathways, along
with a rate of cure for infected cells (Sadki et
al., 2023). Martin et al. (2011) focused on
HCV transmission among injecting drug users,
demonstrated that the effectiveness of antiviral
treatment is remains strong even in the
presence of uncertainties regarding immunity.
This suggests that treatment remains a crucial
factor in controlling the spread of HCV,
regardless of immune factors. In a study by Jia
et al. (2019), a new model was proposed to
understand how HCV spreads in China. Their
model showed that the main way the virus
spreads is through contact with people who are
infected. They suggested several ways to stop
the wvirus’s spread, including reducing

transmission through contact with infected
individuals and speeding up virus detection.
Additionally, they mentioned the importance of
faster treatment and improving recovery rates
for hospitalized patients. Rihan et al. (2017)
established a mathematical model using a
fractional-order derivative to analyze the
dynamics of HCV replication. The model
incorporated the effects of interferon-alpha
(IFN) treatment and accounted for intermediate
cellular interactions and delays in the viral life
cycle.

The mathematical model presented by Pitcher
et al. (2019) suggests that prioritizing treatment
for individuals with advanced liver disease,
while focusing interventions on incarcerated
individuals and their injection network
partners, could be crucial in eliminating HCV
among individuals who wvaccinate drugs.
Chatterjee et al. (2021) used a mathematical
model to explore how HCV infection spreads
and how to control it. Their findings indicated
that regular adherence to direct-acting antiviral
(DAA) therapy is effective in preventing the
disease, and that the duration and frequency of
treatment (pulse therapy) significantly impact
the progression and replication of HCV. Rong
et al. (2013) developed a sophisticated multi-
scale model that incorporates intracellular viral
replication, allowing for the study of how the
HCV changes in persistent cured with Direct-
Acting Antivirals. Their analysis of data from
persistent cured with the new HCV protease
inhibitor, danoprevir, indicated that the drug
effectively inhibits the virus from replicating
and aids in eliminating the existing virus.
Avendano (2002) proposed a model showing
that increasing the death rate of infected liver
cells and the free virus could effectively lower
the viral load, based on a system considering
uninfected and infected liver cells, HCV, and
T-cells. Nguyen et al. (2023) studied how to
use a different mathematical approach (optimal
control theory) to create treatment plans that
are specific to each person with HCV.
Computer simulations showed that this
approach could reduce the amount of virus and
the number of infected liver cells, while also
allowing healthy liver cells to grow. Using
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adaptive neuro-fuzzy technology, Khodaei et
al. (2002) developed and tested a new
intelligent controller aims to effectively control
HCV infection within the population. Wameko
(2019) modeled the spread of HCV and
analyzed the effectiveness of different control
strategies, which include  preventing new
infections, treating acutely infected individuals,
and providing treatment for those with chronic
infection. The results indicated that the
combined application of these strategies could
eradicate HCV. Okosun (2014) investigated
how optimal control strategies, including
screening immigrants and treating HCV,
influence  disease  transmission in a
homogeneous  population with  constant
immigration of susceptible individuals. Their
research concluded that targeting both acute
and chronic infections through treatment is the
most effective approach to control HCV spread.
Mehr et al. (2021) designed a sophisticated
mathematical model to track HCV outbreak
dynamics. This model accounts for various
population groups, including those unaware
and aware of their susceptibility, those with
acute and chronic infections, and those
receiving treatment. El Youssoufi et al. (2020)
also developed a discrete mathematical model
to study HCV infection dynamics and
evaluated the effectiveness of various control
strategies, particularly in the context of
treatment. Their research explored the impact
of each control measure and ultimately
concluded that the proposed strategies were
effective in reducing HCV burden. To
determine the best treatment strategy for HCV
among active IDUs, Martin et al. (2011)
developed a model simulating HCV
transmission and treatment over a 10-year
period. Khodaei-Mehr et al. (2018) used
ANFIS-based optimal control and showed that
the proposed strategy effectively reduced the
number of infected individuals by
approximately 19% compared to other control
strategies. Imran et al. (2014) also investigated
the impact of different control strategies on
HCV  transmission dynamics using a
deterministic model. Their analysis revealed
that implementing a time-dependent quarantine
strategy is the most effective and cost-efficient
way to manage the disease. The study by
Ainea et at. (2012) also revealed that

addressing both treatment and the influx of
infected immigrants is essential for effectively
managing HCV transmission. Their findings
emphasize the need to reduce transmission
rates within the community to lower long-term
prevalence of the disease.

A study by Mahroug and Bentout, (2023)
generalized an age-of-infection model for
heterogeneous environments. They addressed
well-posedness, proving bounded, positive
solutions despite the model's partial degeneracy
and non-compact solution map. Djilali et al.
(2024) explored a generalized nonlocal
dispersion SIS epidemic model with spatial
heterogeneity, subject to Neumann boundary
conditions. Their aim is to analyze the model
using a convolution operator for nonlocal
spatial movement and a generalized incidence
function.

Djilali et al. (2025) models a process in
heterogeneous environments using
spatiotemporal methods and distributed delay.
The study by Din et al. (2021) examined the
existence of a stationary Markov process in
degenerate stochastic differential equations.
Furthermore, it explores the influence of noise
intensity, cell-to-cell infection, and time delays
on virus dynamics, using realistic parameter
values. tul Ain (2024) introduced a stochastic
epidemic model of cholera transmission,
designed to analyze long-term dynamics in
migrating communities susceptible to pathogen
contamination. The model consists of six
distinct human and microbial groups,
interrelated through mathematical formulas that
capture disease traits and environmental noise.

In this article, model that investigates the
dynamics of HCV infection among chronically
infected individuals receiving treatment was
developed and analyzed. The model classifies
individuals into five categories such as S(t),
C(t), A(t), T(t) and R(t), which stands for
susceptible, acutely infected, chronically
infected, treated, and recovered, respectively.
Our findings demonstrate  that rapid
identification and treatment of those in chronic
stages of HCV infection are key to effective
and accelerated elimination. The rest of the
paper is organized as follows: Section 2
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introduces the mathematical model and the
corresponding nonlinear system of ordinary
differential equations. Section 3 explains the
mathematical analysis of the model. The
numerical simulation results and discussion are
offered in Sections 4 and 5, with the conclusion
delivered in Section 6.

Model Formulations

This model analyzes HCV infection in
chronically infected individuals undergoing
treatment using a mathematical approach. The
model classifies the population at time 't* into
distinct epidemiological groups, such as:

e The susceptible group, S(t) represents
those in the population who are at risk of
contracting HCV,

e The acutely infected class, symbolized by
A(t) involves of persons who have newly
contracted HCV, are asymptomatic, and
may recover spontaneously  without
treatment,

e  Chronically infected persons, symbolized
C(t), are those with persistent HCV
infection who remain infectious and face a
high risk of liver failure or cancer without
treatment,

e The treatment class T(t) symbolizes
individuals who are actively experiencing
treatment for chronic HCV infection, using
either Direct-Acting Antivirals or natural
herbal supplements. This classes contains
those who have not yet succeeded a
medication,

The number of recovered individuals at time t,
denoted by R(t) represents those in the
population who have recovered from HCV
infection.

Thus, the total population N(?) is given by

N() = S(t) + A(t) + C(t) + T(t) + R(t)

In order to develop our model; we rely on the
following assumptions:

(A1) Individuals in all classes have a mortality
rate of p from causes other than HCV.

(A2) The susceptible S(t) persons are engaged
into the population through birth and migration
at a constant rate w and get the recovered
persons from the recovered class by the rate (0.

(A3) The acute infected A(t) group is increased
from susceptible group by BA screening rate
and decreased by disease induced death rate 9,.

(A4) The -chronic infected C(t) class is
increased from susceptible group by (1- B)A
screening rate, the acute group by the rate € and
also increased by getting some persons from
treatment failure rate p and decreased by the
disease induced death rate 9,.

(A5) The treatment T(t) class is increased from
chronically infected class by the rate
progression n and decreased by the disease
induced death rate 9.

(A6) The recovered R(t) class grows as
individuals from the treatment class are cured
at a specific cure rate .
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Figure 1: Flow diagram of the HCV infection
transmission model, incorporating treatment.

Given the assumptions and the flow diagram
(figure 1), we can set up the system of non-

linear ordinary differential equations as
follows:
ds

dA
2e= BAS — (e+ p+ 6, + 0)A,

ac_ eA+(1- P)AS+ pT— (u+ 6,4 n+ a)C, (1)

dt

aT

— = 1C— (u+ y+8+ pT,
%:yT+ A +oC— (u+w)R,
where A = % Here o, is effective

contact rate of population with acute HCV and
o, is effective contact rate of population with
chronic HCV. The initial condition of the
population is

S(0) =S, A(0)= Ay,C(0) = Cy, T(0)=T, and R(0) = R,
The biological meanings of all parameters are
given below in table 1.

Table 1: Description of parameters of model (1

Para Description
meter
T New recruits into the population

n Natural mortality rate

B The proportion at which S(t) joining A(t) and
C(t)

By The contribution of disease to mortality in A(t)

The contribution of disease to mortality in C(t)

83 The contribution of disease to mortality in T(t)

€ The rate at which A(t) become C(t)

The recovery rate from C(t)

Rate of progression for T(t) from C(t)

Treatment failure of C(t)

Treatment cure rate

The rate of A(t) joining R(t)

Removal rate from R(t) to S(t)

Model analyses

Positivity and boundedness of the solution,
equilibrium points, reproduction number,
stability of disease free equilibrium point and
sensitivity analysis will be discussed in this
section.

Positivity and Boundedness of the
solutions

Since each component of the model represents
a population, it’s essential to demonstrate that
all variables S(), A(t), C(t), T(t) and R(t)
remain non-negative and bounded for all £ > 0
Theorem 3.1. (Positivity). If the initial
conditions S, 4, C, T, and R,, are set for ¢,
>0, then for all ¢ € (0, ty), the values S(¥), A(?),
C(t), T(t) and R(t) remain positive in R
Proof. We start with the first equation of the
mg(qlel, which can be expressed as:

ar Tt wR — +ADS=2—-((@+ DS
From this, we derive that:
S5(t) =S,exp(— [(u+ Adt) > 0, indicating
that S(t) remains non-negative for all t, where
Sy is the initial susceptible population at =0
By applying similar reasoning to the other
dynamic variables, we can conclude that they
also stay positive for all >0

A(t) = Agexp (—fot(s +p+68+06) dt) > 0,
C(t) = Cyexp (—fot(p + 8, +n+ 0) dt) > 0,
T(t)= Tyexp (— fot(p + 683 +y+ p) dt) > 0,
R(t) = Rgexp (— fot(p + w) dt) > 0.
Thus, for all ¢ € [0, tp)], S(t), A, CO), T
and R(t) are positive in R3.

Theorem 3.2. (Boundedness). For the
functions S(t), A(t), C(t), T(t) and R(t) there
exists a positive constants Sy, 4y, Cy Ty and
Ry such that lim;_ ., sup S(t) < Sy,

limg_o, sSup A(t) < Ay, limgeo sup C(1) = Cypo
lim;_., sup T (t) = Ty, and lim,_, sup R (t)
=Ry forallt €/0, ty)] t)>0.

Proof. To show the boundedness, we add all
the equation of proposed model as follows:

dN dS dA dC dT dR
—=—t—+—+—+—=

dt dt dt dt dt dt
m—puN — (86,4 + 8,C 85T).
This implies that % < 1 — uN. It follows that
N(t) = mp + Nyexp(—pt). Then by
considering t — @9, we have

lim;.,, supN(t) = T;—l Thus, the model is
bounded by taking Spy = Apr=Cpy =Ty =

i1
Ry = - This completes the proof of theorem.

Journal of Science and Sustainable Development (JSSD), 2025, 13(2), 23-36

ISSN: 2304-2702 (print)



Analyses of Hepatitis C Virus with Targeted Treatment for Chronic Infections: [28]

Theorem 3.3. (Closed region).

The region 0 = {(S,4,C,T,R) € R:: S(t) +A(t) +C(t) + T(t) + R(®) < T:T}

is a positively invariant region for the model.
Proof. From theorem 3.2, we have

daN . - .
2 =T N, and using the initial condition
Ny > 0 along with integrating factor, we
derive that o < N(t) < % + Npexp(—nt),
where N, is the initial total population.

Ast - oo,N(t) = }:—l This shows that all

feasible solutions of the system will enter the
region (), which is positively invariant. Thus,

all solutions within () will remain there for all
t = 0. Therefore, it suffices to analyze the

transmission dynamics of the HCV model
system within ().

Equilibrium points

Disease free Equilibrium (DFE) point
To find the equilibrium points of the model
equations in (1), we solve them simultaneously
with the time derivatives set to zero and assume
that all dynamic variables are non-zero. This
process yields two equilibrium points: one
representing a disease-free state and the other
an endemic equilibrium. In this context, we
focus on determining the disease-free
equilibrium  point, where the disease
compartments are treated as zero. Infected
compartments include 4,¢,7 while the others

*

are not infected. At infection free steady state
A =C =T = R = 0. Hence, the disease -
free state is N, = (So, Aq, Co, To, Rp). By setting
right hand side of the system to zero, we get:
NP = (S2, A®, CP, TP, RP) = (% 0,0,0,0).

Disease endemic equilibrium (DEE)
point

Next, we identify the endemic equilibrium
point of the system where the disease is present
in the population this equilibrium point is found
by setting each equation in the system to zero
while assuming that all dynamic variables are
non-zCro (i.e. S*+ A"+ C* = T"# R*= 0) by
solving the system of equations in (1)
simultaneously with the time derivatives equal

to zero we obtain the expression

N* = (§*, A%, C*, T*,R") where
« _ Tt R + BA"(m+ wR*) + wR’
T T k@t

c*

_ (m+ @R™) + (gBA+ (1— B)A"ky)(K2Ka) T*
kyko(A*+ p) (k2 ks +np) '

_ (m+ wR") + (efA” + (1- Bk 1) (nk2)

— - and
kka(A°+ ) (kzka+ no)

[miny + oks) + (A" + (1- Ik )+OBA" (kaks +1p)]

T ky(A*+ p)(kokat np)— w[(qy + ok3) + (eBA* + (1— B)AKk,)+0BA* (koks +np)]”

Here
= alA"+Kagc"

N
kiy=e+p+8,+0ky=p+68,+n+o0
andk3= 1 + 83 + }/‘l'p
The symbol ’ =’ denotes the population of each

variable at the equilibrium point. Let the
population in each class at steady state be
represented as S*, A*, ¢*, T* and R*

Consequently, the force of infection at the fixed

points, denoted A*, corresponds to the non-
a A"+ asC”

T

Basic reproduction number

Definition 3.1. The basic reproduction number
(Rg) represents the typical number of new

negative roots of A* =

infections caused by a single infected
individual when introduced into a population
where everyone else is susceptible to the
disease. It can be calculated using the next-
generation approach, a method detailed by
Driessche and Watmough in their 2002
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publication. To compute R, it is essential to

differentiate new infections from other
transitions within the population. The infected
classes are 4,¢ and T. We can express system
(Dasx=F(x) — V(x),
V-V~ -v* wherex = (4,C,T,S,R). Here,
F represents the rate of new infections in each
class, ¥ is the rate of transfer into each class
through other means, and V™ is the rate of

transfer out of each class. Given the system of
non-linear differential equations

A= BAS — (e+ u+ 6, + 6)4,
C=eA+(1— p)AS+ pT— (u+ 6, + n+ a)C,

(e+u+ 6+ 0)A
—eA— pT+ (u+ 8+ n+a)C | (4)
—nC+ (u+ y+6:+ p)T
—nm— wR+ (u+ A)S
—yT— 6A—0oC+ (u+ w)R
Calculating the partial derivatives of (3) at
disease free state N, and bearing in the mind

that the system (1) has three infected classes,
namely, 4, ¢ and T we obtain

Vix) =

Ba, 0
1- By 0)'
0 0

In the same manner, partial derivatives of (4)
with respect to 4 ¢ and T at disease free state

Ba,
F= ((1— Ba,
0

. ky 0 o
T=nC— (u+ y+6;+ p)T, Ny gives |, _ (_g k, —p) and its inverse
S=m+wR— (u+ S, ) 0 —n ks
R=yT+ 0A+0C— (u+w)R. becomes .
Based on the system of equations (2) above, the P 0 0
matrices F(x) for new infection terms and V(x) vl — £ks k3 P
for the other transition terms are defined as kl(’;;kﬁ 1) kzl;;3+ P kzk::.:Pﬂ
. 2
follows: BAS 3) and ky(kzkzt+pn)  Kzxkatpn kakst pn
(1— p)as (3) an As defined in (Driessche & Watmough, 2002),
FGx) = | g R, is the spectral radius of the next generation
0 matrix, Fy -1 and it is given by
Fy—1
Bay(kks + pn) + Bajysk ks Bazks Bpa;
ky(kz2ks + pm) kyks + pn kaks + pn
= | A = Playlkzks + pn) + azekiks] (1 — Bazks; (1 — Bazp |
ky(kaks + pn) kaks + pn koks + pn
0 0 0

Hence, R of the model (2) can be determined
by

(1= Blagky kgt Blkslay kot cap) — ay py]

Theorem 3.4. The disease free state is locally
asymptotically stable if Ry < 1 and unstable if

Ry> L
Proof. To prove the theorem, we first construct

Ry = o(5) a Jacobian matrix for the system (1) at disease
ky(k2kz+ pm) free state
Stability of disease free state
Local stability of disease free state
—u ay as 0 W
0 Bal — kl ﬁaz 0 0 (6)
In, = 0 ce+(1—-Bay 1—-Pla;—ky p 0
0 0 n ks 0
0 — @ g 4 —(u+ w)

Now we evaluate the Jacobian matrix at DFE
and examine its stability effect due to R, > 1.

From the Jacobian matrix (6), we get a

characteristic polynomial by computing
det(Al — Jy,) = 0 as follows:
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u+a ay
0 A—(Bay— ky)
0 —(+0- Blay)
0 0
0 —0

It is obvious that

Ay = —1, Ag —(n + w) are two

negative eigenvalues of [y , from the following

block matrix:
A—K, — Ba, 0

R]NO = —(E+(1— B)al) A—KZ 0 )
0 -7 A—K,

[30]
ay 0 —w
—fa, 0 0
(1- Bla; — k, P 0
n ks 0
o Yy —u+ w)

where K, = fa;— k, and K, = a5 (1 — f)
— k- The characteristic polynomial of R I is
0

givenby p(1) = 2 + 4,22 + A,1 + A, Where

Al — k3 - KZ - kl'AZ = ﬁzalaz + Kle - (ﬂazg + ﬁa1a2+K1k3+

K3k3 + pn)
and

Az = K (K>ks + pn) + k3(BPa,a; — faze — fayay).

By applying the Routh-Hurwitz stability
criterion (Allen, 2007) and performing some
algebraic manipulations, it can be demonstrated
that the eigenvalues of the block matrix R),N0

have negative real parts
R(42), R(43),R(4) < 0, when Rp < 1.
Conversely, if Ry > 1, then A4, < 0,

indicating that the matrix R T has at least one
[n]

eigenvalue with a positive real part. Therefore,
the DFE point of model (1) is locally
asymptotically stable when R, < 1 and

unstable when Ry > 1.

Global stability of disease free state
This sub-section examines the global stability
of the disease-free state.

Theorem 3.5. If R, < 1, the disease-free state

Ny of model (1) is globally asymptotically

stable within its feasible region.

Proof. We start rewriting model (1) as follows:
dax ay
ar = FXY). 4 =

where X = (5,R) € r2 shows the non-disease

G(X,Y), wWith G(x,0) = 0

classes and y = (4,c,T) € R3® shows the
disease classes. Two conditions, H, and H,, are
necessary for the global asymptotic stability of

the DFE of model (1). (H,) For % = F(X,0),
the point X~ is globally asymptotically stable,
F(x*,00 = 0. (Hp We
G(X,Y) = BY —G(X,Y),G(X,Y) > 0, for
(X,Y) € O, where B = D,G(X", 0) is an M-
matrix. The off-diagonal elements of B are

where have

non-negative, defining the biologically feasible
region in {. For model (1), we have:
ax  m— uS

= ("") 7)
In fact, the system in (7) above is globally

m

asymptotically stable around X* = (;_ 0).

This can be confirmed by the solution

m
S(t) = E +(5(0) — E)e—ur, which shows that
lim;_., S(t) = —. This indicates the global
u

convergence of (7) in (). Furthermore, from
model (1), we get:

Bay Ba;, 0
B=| e+(1- Blay (- Pla; —k; P
0 n — k3
and
A+CHT+R
CXY) = <(a1A + aZC)O(S+A+C+T+R)>.
0
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A+C+THR .
STt " = inside
S+A+CHTHR

therefore, G(X,Y) = 0. Thus, the
conditions (H,), and (H,) satisfied. Hence, the
DFE point N, of model (1) is globally
asymptotically stable when Ry < 1.

Clearly, and

two

Sensitivity analysis

This sub-section discusses the influence of
various model parameters on the reproduction
number Ry to understand their comparative

effects on disease spread within the
community. To conduct the sensitivity analysis,
we need to compute the partial derivatives of
R, with respect to the model parameters. The

sensitivity indices related to a parameter p are

represented by the normalized forward
sensitivity  index, which indicates the
importance of the parameter in terms of disease
transmission and prevalence. Following the
Table 2: Sensitivity indices for model parameters.

methodology outlined in (Chitnis et al., 2008),
the normalized forward sensitivity index of the
variable R,, which depends differentiable on

the parameter P, is given by:

qJRO — % X a_p

P 3p aRo
From an explicit formula R in equation (5), we
obtain a mathematical expression that

calculates the normalized sensitivity indices of
R, with respect to various parameters that

affect R,.

R 6R0
ylho - o
o ! dery

For instance,

e 0.65. Likewise, we can
aR,

determine the sensitivity indices for the
remaining parameters. The sensitivity indices
evaluated at the baseline parameters given in

table 2.

Parameters Sensitivity index Parameters Sensitivity index
aq +ve 1l -ve
ay tve w -ve
g -ve p -ve
y -ve 8, -ve
B +ve 8 -ve
6 -ve lop -ve
£ +ve n -ve

According to table 2 above, if a parameter has a
positive sensitivity index, it means that
increasing its value will have a significant
impact on the frequency of disease spread. For
instance, based on the value of 1}’(510 = 0.65, we

can observe that a 6.5% increase or decrease in
the contact rate g will result in a 6.5% increase
On the other hand,

parameters with negative indices implies that

or decrease in R,.

increasing the significance of these parameters
would contribute to reducing the severity of the
disease.
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Table 3: Parameter values of model (1).

Parameters Value (year-1) Source Parameters | Value (yeqp-1) Source

T 100 Wameko, 2019 o 0.002 Shi, R., & Cui, Y., 2016
I 0.0004 Wameko, 2019 [ 0.23 Ainea et al., 2012

ﬁ 0.65 Wameko, 2019 Y 0.13 Okosun et al., 2014

61 0.03 Wameko, 2019 w 0.05 Ainea et al., 2012

62 0.05 Wameko, 2019 p 0.05 Teklu et al., 2025

53 0.001 Assumed ay 0.002 Wameko, 2019

£ 0.05 Aineaetal., 2012 | a, 0.001 Wameko, 2019
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Figure 2. Solution behavior of the HCV
model (1) in the absence of treatment.
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Figure 4. Dynamics

of acutely and chronically

infected individuals in the absence of treatment.
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Figure 6. Dynamics of chronically infected and

recovered individuals
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Figure 8. Dynamics of chronically infected individuals
in the absence of treatment
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Figure 3. Solution behavior of the HCV

model (1) under treatment.
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Figure 5. Dynamics of acutely and chronically

infected individuals under treatment.
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Figure 7. Dynamics of chronically infected
and recovered individuals under treatment.
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Discussion

This segment aims to explain the simulation
results and highlight their implications for the
state variables and parameter values. In the
absence of treatment, the numerical simulation
in Fig. 2 demonstrates a gradual decline in both
chronically infected and recovered individuals,
with the model solutions converging to an HCV
endemic equilibrium after around twelve years.

Conversely, Fig. 3 illustrates that, with
treatment, the population of chronically
infected individuals’ decreases while the

population of recovered individuals gradually
increases over time. A comparison of Figs. 4
and 5 reveals the impact of treatment on
acutely and chronically infected individuals.
While the acutely infected population decreases
similarly in both figures (as treatment is not
applied to acute cases), the chronically infected
population  differs significantly. Without
treatment (Fig. 4), this population remains
above 200, while treatment (Fig. 5) reduces it
below 200. Figs. 6 and 7 illustrate the dynamics
of chronically infected and recovered
individuals without and with treatment,
respectively. In Fig. 6, chronic infections
decrease gradually while recovery shows
minimal increase. However, Fig. 7 reveals that
treatment leads to a more pronounced decline
in chronic infections and a rapid increase in
recovered individuals. The impact of treatment
on chronically infected individuals is evident in
Figs. 8 and 9. Fig. 8 illustrates the dynamics of
chronically infected individuals in the absence
of treatment, while Fig. 9 shows the same
dynamics with treatment. The decline in
chronically infected persons is significantly
faster in Fig. 9 due to the treatment's effects.
The timely identification and treatment of
chronically infected individuals, employing
either direct-acting antivirals (DAAs) or natural
herbal supplements with physician
consultation, holds promise for -effectively
eliminating HCV within a shorter time frame.

Conclusion

In this research article, we derived and
analyzed a deterministic mathematical model of
HCV using a system of first-order non-linear
differential equations. Our model uses five non-
linear ordinary differential equations to
describe the interactions between susceptible,
acutely infected, chronically infected, treated,
and recovered individuals. The model aims to
reduce the number of acute and chronic cases,
and it specifically considers treatment for
individuals with chronic infection. In this
study, we first established basic analytical
properties, including positivity, boundedness of
solutions, and identification of disease-free and
endemic equilibrium points. Subsequently, we
investigated the basic reproduction number and
proved the local and global stability of the
disease-free equilibrium point. We conducted
numerical  simulations using MATLAB
software to validate our theoretical findings and
illustrate the impact of treatment on HCV viral
dynamics. The numerical simulations closely
aligned with our theoretical predictions. The
results demonstrated that early identification
and treatment of chronically infected
individuals accelerates HCV elimination by
reducing chronic infections and increasing
recovery rates. Future research will refine the
model by incorporating optimal control
measures to optimize disease management

strategies, validating it with real-world
population data, and analyzing cost-benefit
ratios, resource availability, population
demographics, and local healthcare
infrastructure.
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